Stoichiometric model and flux balance analysis for a mixed culture of Leptospirillum ferriphilum and Ferroplasma acidiphilum.

نویسندگان

  • M P Merino
  • B A Andrews
  • J A Asenjo
چکیده

The oxidation process of sulfide minerals in natural environments is achieved by microbial communities from the Archaea and Bacteria domains. A metabolic reconstruction of two dominant species, Leptospirillum ferriphilum and Ferroplasma acidiphilum, which are always found together as a mixed culture in this natural environments, was made. The metabolic model, composed of 152 internal reactions and 29 transport reactions, describes the main interactions between these species, assuming that both use ferrous iron as energy source, and F. acidiphilum takes advantage of the organic compounds secreted by L. ferriphilum for chemomixotrophic growth. A first metabolic model for a mixed culture used in bacterial leaching is proposed in this article, which pretends to represent the characteristics of the mixed culture in a simplified manner. It was evaluated with experimental data through flux balance analysis (FBA) using as objective function the maximization of biomass. The growth yields on ferrous iron obtained for each microorganism are consistent with experimental data, and the flux distribution obtained allows understanding of the metabolic capabilities of both microorganisms growing together in a bioleaching process. The model was used to simulate the growth of F. acidiphilum on different substrates, to determine in silico which compounds maximize cell growth, and which are essential. Knockout simulations were carried out for L. ferriphilum and F. acidiphilum metabolic models, predicting key enzymes of central metabolism. The results of this analysis are consistent with experimental data from literature, showing a robust behavior of the metabolic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching c...

متن کامل

Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after d...

متن کامل

Microbial ecology of an extreme acidic environment, the Tinto River.

The Tinto River (Huelva, southwestern Spain) is an extreme environment with a rather constant acidic pH along the entire river and a high concentration of heavy metals. The extreme conditions of the Tinto ecosystem are generated by the metabolic activity of chemolithotrophic microorganisms thriving in the rich complex sulfides of the Iberian Pyrite Belt. Molecular ecology techniques were used t...

متن کامل

Thiol/Disulfide System Plays a Crucial Role in Redox Protection in the Acidophilic Iron-Oxidizing Bacterium Leptospirillum ferriphilum

Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+) as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balan...

متن کامل

Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT

Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of this model species' type strain is available, limiting the possibilities to investigate the strategies and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2015